skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Wilkins, Michael_J"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Wetlands are a major source of methane emissions and contribute to the observed increase in atmospheric methane over the last 20 years. Methane production in wetlands is the final step of carbon decomposition performed by anaerobic archaea. Although hydrogen/carbon dioxide and acetate are the substrates most often attributed to methanogenesis, other substrates—such as methylated compounds—may additionally play important roles in driving methane production in wetland systems. Here we conducted mesocosm experiments combined with genome-resolved metatranscriptomics to investigate the impact of diverse methanogenic substrate amendment on methanogenesis in two high methane-emitting wetlands with distinct geochemistry, termed P7 and P8. Methanol amendment resulted in high methane production at both sites, whereas acetate and formate amendment only stimulated methanogenesis in P7 mesocosms, where aqueous sulfide concentrations were lower. In P7 sediments, formate amendment fueled acetogenic microbes that produced acetate, which was subsequently utilized by acetoclastic methanogens. In contrast to expression profiles in P7 mesocosms, active methylotrophic methanogen genomes from P8 showed increased expression of genes related to membrane remodeling and DNA damage repair, indicative of stress tolerance mechanisms to counter sulfide toxicity. Methylotrophic methanogenesis generates higher free energy yields than acetoclastic methanogenesis, which likely enables allocation of more energy toward stress responses. These findings contribute to the growing body of literature highlighting methylotrophic methanogenesis as an important methane production pathway in wetlands. By using less competitive substrates like methanol that provide greater energy yields, methylotrophic methanogens may invest in physiological strategies that provide competitive advantages across a range of environmental stresses. 
    more » « less
  2. Abstract Wildfires, which are increasing in frequency and severity with climate change, reduce soil microbial biomass and alter microbial community composition and function. The soil microbiome plays a vital role in carbon (C) and nitrogen (N) cycling, but its complexity makes it challenging to predict post-wildfire soil microbial dynamics and resulting impacts on ecosystem biogeochemistry. The application of biogeochemically relevant conceptual trait-based frameworks to the soil microbiome can distill this complexity, enabling enhanced predictability of soil microbiome recovery following wildfire and subsequent impacts to biogeochemical cycles. Conceptual frameworks that have direct links to soil C and N cycling have been developed for the soil microbiome; the Y-A-S framework overviews soil microbiome life history strategies that have tradeoffs with one another and others have proposed frameworks specific to wildfire. Here, we aimed to delineate post-wildfire changes of bacterial traits in western US coniferous forests to inform how severe wildfire influences soil microbiome recovery and resultant biogeochemical cycling. We utilized a comprehensive metagenome-assembled genome catalog from post-wildfire soils representing 1 to 11 years following low- and high-severity burning to identify traits that enable the persistence of microbial taxa in burned soils and influence ecosystem C and N cycling. We found that high-severity wildfire initially selects for fast growers and, up to a decade post-fire, taxa that invest in genes for acquiring diverse resources from the external environment, which in combination could increase soil C losses. This work begins to disentangle how climate change–induced shifts in wildfire behavior might alter microbially mediated soil biogeochemical cycling. 
    more » « less